Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Añadir filtros

Base de datos
Tipo del documento
Intervalo de año
1.
J Chem Inf Model ; 62(18): 4512-4522, 2022 09 26.
Artículo en Inglés | MEDLINE | ID: covidwho-2008239

RESUMEN

Five major variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have emerged and posed challenges in controlling the pandemic. Among them, the current dominant variant, viz., Omicron, has raised serious concerns about its infectiousness and antibody neutralization. However, few studies pay attention to the effect of the mutations on the dynamic interaction network of Omicron S protein trimers binding to the host angiotensin-converting enzyme 2 (ACE2). In this study, we conducted molecular dynamics (MD) simulations and enzyme linked immunosorbent assay (ELISA) to explore the binding strength and mechanism of wild type (WT), Delta, and Omicron S protein trimers to ACE2. The results showed that the binding capacities of both the two variants' S protein trimers to ACE2 are enhanced in varying degrees, indicating possibly higher cell infectiousness. Energy decomposition and protein-protein interaction network analysis suggested that both the mutational and conserved sites make effects on the increase in the overall affinity through a variety of interactions. The experimentally determined KD values by biolayer interferometry (BLI) and the predicted binding free energies of the RBDs of Delta and Omicron to mAb HLX70 revealed that the two variants may have the high risk of immune evasion from the mAb. These results are not only helpful in understanding the binding strength and mechanism of S protein trimer-ACE2 but also beneficial for drug, especially for antibody development.


Asunto(s)
Enzima Convertidora de Angiotensina 2 , COVID-19 , Bioensayo , Humanos , Simulación de Dinámica Molecular , Mutación , Peptidil-Dipeptidasa A/química , Unión Proteica , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus/metabolismo
2.
Cell Discov ; 8(1): 9, 2022 Feb 01.
Artículo en Inglés | MEDLINE | ID: covidwho-1661959

RESUMEN

Safe, effective, and economical vaccines against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are needed to achieve adequate herd immunity and end the pandemic. We constructed a novel SARS-CoV-2 vaccine, CoVac501, which is a self-adjuvanting peptide vaccine conjugated with Toll-like receptor 7 (TLR7) agonists. The vaccine contains immunodominant peptides screened from the receptor-binding domain (RBD) and is fully chemically synthesized. It has been formulated in an optimized nanoemulsion formulation and is stable at 40 °C for 1 month. In non-human primates (NHPs), CoVac501 elicited high and persistent titers of protective neutralizing antibodies against multiple RBD mutations, SARS-CoV-2 original strain, and variants (B.1.1.7 and B.1.617.2). Specific peptides booster immunization against the B.1.351 variant has also been shown to be effective in improving protection against B.1.351. Meanwhile, CoVac501 elicited the increase of memory T cells, antigen-specific CD8+ T-cell responses, and Th1-biased CD4+ T-cell immune responses in NHPs. Notably, at an extremely high SARS-CoV-2 challenge dose of 1 × 107 TCID50, CoVac501 provided near-complete protection for the upper and lower respiratory tracts of cynomolgus macaques.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA